查看原文
其他

一周数学丨学生不会做题,真正原因是不懂数学语言

2017-09-27 王伟文 星教师


周一(其他学科)丨周二(语文)

周三(数学)丨周四(英语)

周五(班主任)丨周六(微周刊)丨周日(好文精选)




每一门学科都有自己特有的语言,用来表达其内容。在数学的教学活动中,数学语言是教师授课的主要手段和学生学习的重要工具。

学生不会做题,真正原因是对数学这门特殊语言没有根本掌握。

数学语言作为一种表达科学思想的通用语言,精巧、简明、方便,是数学思维的最佳载体,它不仅为数学本身,也为其它学科的数学应用提供了简捷的表达方式。

数学语言可分为抽象性数学语言和直观性数学语言,包括数学概念、术语、符号、式子、图形等。数学语言又可归结为文字语言、符号语言、图形语言三类。


数学语言如何影响解题能力?



良好的数学语言基础是提高能力的保证


中学生的数学理解能力很大程度上依赖于他对数学语言含义的敏感,而这种敏感又来自于其坚实的数学语言基础。一个优秀的中学生总能从一个关键词、一个关键符号中捕捉住最关键的信息,对题意做出正确的理解和准确的判断。

例如,在有理数的教学中,零和正整数可以表达为“非负整数”;在不等式的教学中,a≥b可以表达为a大于等于b,或b不大于a。

在乘方和开方的教学中,结合加、减、乘、除,把六种运算的数学语言讲正确、讲清楚,乘方和开方的运算只不过是用字母的位置关系和根号来表示。这样,学生就清楚地掌握了六种运算的(字母)名称、运算符号和名称、运算结果,同时用了类比的方法,很容易记住乘方和开方的运算。


运用语言转换,提高解题能力


数学思维用文字表达则生动,用符号表达则简练,用图形表达则直观形象,但有些问题用文字表达过于繁杂,用符号表达又嫌抽象,而图形表达有时又未必全面。

不少学生不善于对数学语言的多种形式进行转换,尤其是对抽象的符号语言常常有意回避,造成表达死板、思维僵化的恶果。因此,在数学语言教学中,突出语言变换的能力,有利于活化学生的思维,提高解题能力。

例:y=│x-1││x-2││x-3│的最小值是?

本题若通过分段讨论求得表达式,再求最小值,则计算太复杂,很多学生因怕烦琐而放弃。

如果启发学生理解符号语言│a-b│的几何意义是:在实数范围表示数轴上代表实数a、b的两点间的距离,先画出它的图形,以图形启发思维,再辅之以简单的计算和筛选,就可迅速判断出正确结果。

另一方面,有些几何图形问题虽然图形直观,但其已知条件和结论之间的联系不够明显。这时,如果把直观的几何图形用符号语言来表示,用方程或代数的方法来解答,就可使解题思路更清晰,更具有可操作性。


对数学语言展开联想,提高思维能力


数学语言结构严谨,特征清晰。如果学生能结合已有的知识和经验,对数学问题中的语言结构进行联想,无疑会加强数学知识间的沟通和联系,对学生思维能力的发展具有促进作用。


生活语言结合数学语言,提高应用能力


应用问题要通过数学方法获得解决,首先须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型。

例:张庄、王庄、李庄三村的位置是,张庄在李庄之南,王庄在李庄之东,一人自张庄到李庄,步行六小时到达,返回时,绕道王庄,经过十小时回到张庄,如果此人每小时步行5公里,三村之间的路都是直线连接,问张庄、王庄两村相距多少公里?

把生活语言表示成图形语言,即用A、B、C分别表示张庄、王庄、李庄三村,画出图形,转化为数学语言就是:张庄、王庄、李庄三村的位置正好构成一个直角三角形ABC。

于是问题转化为:在直角三角形ABC中,已知b=AC=5×6=30公里,a+c=BC,AB=5×10=50公里,要求c=AB为多少公里?

运用勾股定理解二元二次方程组,问题就解决了。


准确运用数学语言,提高表达能力


中考中不少学生由于其数学表达不规范、不清晰,使阅卷老师不知所云的现象屡见不鲜,直接造成失分。这些学生平时对数学语言的掌握不够准确或不够重视,是造成表达能力差的主要原因。

在中考中常见的表达错误还有语意含糊、没有把未知数设元就用于解答、乱作推广、增删条件、以图代算、繁简失当、格式不规范等。

数学具有高度的科学性,每个概念都有确定的含义,每个定理都有确定的条件,因此,数学语言务必清楚、准确、符合科学性。只有这样,才能正确地掌握概念,运用定理,并逐步养成严谨、缜密的思维习惯。

另外,只有当学生能用准确、清楚的语言将有关概念表述正确,才能反映出他的思维过程,才能说明他理解了所学的知识。在一定意义上讲:“说题”比“做题”更难,也更重要。


数学语言是教学难点


由于数学语言是一种高度抽象的人工符号系统,因此,它常成为数学教学的难点。

一些学生之所以害怕数学,一方面在于数学语言难懂难学,另一方面是教师对数学语言的教学不够重视,缺少训练,以致不能准确、熟练地驾驭数学语言。

因此在数学教学中,要把数学语言作为一个重要的方面来抓,坚持有计划地长期训练。

任何一种语言的学习,都必须以普通语言为解释系统。数学语言也是如此,通过两种语言的互译,就可以使抽象的数学语言在现实生活中找到借鉴,从而能透彻理解,运用自如。

“互译”有几方面的意思:

将普通语言转化为数学语言


例如方程是把文字表达的条件改用数学符号,这是利用数学知识来解决实际问题的必要程序。

由具体的对应关,系逐步抽象形成映射、函数等概念;对抽象的数学语言理解内化,借助普通语言或具体实例表达交流,比如根据映射和函数的定义,构造映射和函数实例。

将数学语言译为普通语言


数学实践告诉我们,凡是学生能用普通语言复述概念的定义和解释概念所揭示的本质属性,那么他们对概念的理解就深刻。

由于数学语言是一种抽象的人工符号系统,不适于口头表达,因此也只有翻译成普通语言使之“通俗化”才便于交流。


不同形态的数学语言之间的转换


比如集合的自然语言表示、符号语言表示及韦恩图表示。又比如函数y=f(x)在[a,b]上。

“互译”有助于激发学生学习兴趣,加深对数学本质的理解,增强辨析能力,互译的过程体现对立统一的辩证思想,有助于不同思路的转换与问题化归。


如何让学生掌握数学语言?



深入探究符号语言的数学意义


符号语言是叙述语言的符号化,在引进一个新的数学符号时,首先要向学生介绍各种有代表性的具体模型,形成一定的感性认识,然后再根据定义,离开具体的模型,对符号的实质进行理性的分析。

数学符号语言,由于其高度的集约性、抽象性、内涵的丰富性,往往难以读懂。这就要求学生对符号语言具有相当的理解能力,善于将简约的符号语言译成一般的数学语言,从而有利于问题的转化与处理。

合理破译图形语言的数形关系


图形语言是一种视觉语言,通过图形给出某些条件,其特点是直观,便于观察与联想。观察题设图形的形状、位置、范围,联想相关的数量或方程,这是“破译”图形语言的数形关系的基本思想。

例如,长方体的表面积教学,学生初次接触空间图形的平面直观图,这种特殊的图形语言,学生难于理解,教学时可采用以下步骤进行操作:

① 从模型到图形,即根据具体的模型画出直观图;

② 从图形到模型,即根据所画的直观图,用具体的模型表现出来,这样的设计重在建立图形与模型之间的视觉联系,为学生提供充分的感性认识,并使他们熟悉直观图的画法结构和特点;

③ 从图形到符号,即把已有的直观图中的各种位置关系用符号表示;

④ 从符号到图形,即根据符号所表示的条件,准确地画出相应的直观图。这两步设计是为了建立图像语言与符号语言之间的对应关系,利用图形语言来辅助思维,利用符号语言来表达思维。

在数学教学中,教师应指导学生严谨准确地使用数学语言,善于发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用。

重视命题条件关系教学


强化条件意识,寓抽象性于具体实例之中。条件关系实质是抽象的逻辑证据支撑关系的具体表现,强化条件关系教学,有助于培养缜密的逻辑推理能力。

注重思想方法教学


数学语言教学不能是孤立的,我们应当在数学语言教学过程中有意识归纳技巧和方法,提炼策略和升华思想,将思想方法教学溶于数学语言教学之中,通过教学实例展现:零星的观点汇聚形成有用的思路和特殊的技巧,有效的思路演变为系统的方法和策略,科学的方法拓变升华为科学思想。

比如由某些特殊方程的特殊解法可感悟到:试验求值→变形整理→加减、代入技巧→消元法→化未知为已知的思想。

如果把抽象的符号语言转换为直观的图形语言,就可把数量关系问题化为图形性质去讨论,形成“以形助数”的数形结合的数学思想方法。

在学生做题时,我总是反复提醒他们严谨地审题,准确无误地将文字语言转换成数学语言,借助合适的图式表征,将题目信息完全地解构。

数学是思维的体操,语言是思维的外壳,数学的理性思维是建立在数学概念、数学定理等数学语言的严密界定之上的。数学语言的简洁、精炼、严密的特性需要我们在平时的数学教育教学中不断地锤炼教学语言,并进而通过数学语言的训练提升学生的思维品质。




本文为作者原创,已获授权,有编辑

作者丨王伟文

图片丨花瓣网

编辑丨邹雪平


“星教师”广告合作请联系:023-67450968

 投稿邮箱:3207153742@qq.com



推荐阅读

点击关键字,阅读更多“数学”相关内容

华应龙俞正强黄爱华张宏伟

蔡宏圣何凤珠顾志能罗鸣亮罗永军

汤卫红王丽星杨玉翠牛献礼

张齐华缪建平许卫兵


  




/ 蒲公英大学:学校领导力课程 /

点击下图,直接连线 ▼



/ 2017小学数学年度创新教学设计 / 

↓↓↓ 点击"阅读原文" 【一键订购】

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存